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Abstract
Dispersion laws of the full optical phonon spectrum of a nanotube made of würtzite-type
materials as well as the corresponding Fröhlich electron–phonon interaction terms are derived
and studied within the framework of the dielectric continuum model for a uniaxial crystal. The
coupling coefficients describing electron–phonon interaction are obtained in an analytical
closed form, depending on the dispersion law of the involved phonon branch. We present and
discuss results of numerical calculations of optical phonon spectrum and Fröhlich coupling
coefficients for some chosen würtzite AlN nanotubes. Observed features, induced by the
anisotropy of würtzite-type materials, are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since their discovery, initially as a particular form of
carbon [1], nanotubes (NTs) have been subject to a thorough
study, both theoretical, due to their fundamental significance,
and experimental, due to their potential applications in various
fields of technology. With the advent of new growth
techniques, an increasing number of anisotropic würtzite-type
materials, such as ZnO [2], GaN [3, 4], AlN [5, 6], BN [7],
have been successfully cast in q-1D NTs.

For device applications, understanding the electron–
phonon interactions in NTs is of great importance, particularly
in the case of würtzite III-nitride semiconductors, where it is
known that electron–optical phonon interaction plays a main
role in determining free carrier mobility. The studies of the
electron–optical phonon interaction (Fröhlich interaction) in
nanostructures are based mainly on the dielectric continuum
(DC) model [8]. One can identify two main reasons for
using the DC model: first, it allows one to obtain analytical
closed-form expressions that can be used for calculating
the properties of nanostructures made of structurally similar
materials, at least in the limit of long wavelength phonons.
Secondly, this model is essentially analogous to the envelope-
function method used for describing the electronic spectrum in
nanostructures; consequently, on this basis, electron–phonon
coupling can be consistently analyzed. In addition, it is worth
mentioning that the results obtained with the DC model, e.g. in
the case of GaAs/AlAs planar heterostructures, were proved to

be in good agreement, within the limits of their validity, with
those resulting from detailed microscopic calculations [9] or
found in experiments [10].

Recently, the DC model was used to describe some
features of optical phonon spectra and electron–optical phonon
coupling in q-1D anisotropic (würtzite-type) semiconductor
systems [11–13]. Those studies were mainly devoted
to the interface phonon modes and their coupling with
conduction band electrons in würtzite GaN/AlN cylindrical
quantum wires [12] or core–shell würtzite cylindrical quantum
wires [13]. Also, a classification of the possible types of optical
phonon modes in q-1D nanostructures was proposed [12, 13].
The full spectrum of the optical phonons, as well as their
interaction with electrons in a freestanding quantum wire
made of würtzite-type materials and the corresponding polaron
problem were investigated in [16].

The aim of this paper is to investigate confinement effects
on optical phonons and on electron–optical phonon interaction
in a cylindrical nanotube made of anisotropic, würtzite-type
materials. It is organized as follows: the dielectric continuum
model appropriate for use with our considered anisotropic
system is introduced in section 2. We then calculate and
analyze, in section 3, the full optical phonon spectrum of
the nanotube; numerical results carried out in the case of
würtzite AlN cylindrical NTs, for two different ratios of the
inner and outer radii are presented and discussed. Finally,
in section 4, the Fröhlich Hamiltonian is obtained; Fröhlich
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coupling constants are calculated numerically and the results
are discussed.

2. Equations of the model

We consider a cylindrical tube having inner radius R1 and outer
radius R2, made of an uniaxial anisotropic polar material with
its optical axis directed along the tube axis. To simplify the
study of the optical phonon modes in such a system, we work in
the context of the dielectric continuum (DC) model, restricting
ourselves to the case of polar crystals having the optical phonon
field described by a 3D real vector field. This assumption
allows us to investigate the properties of optical phonons in
uniaxial crystals such as layered materials (InSe, GaSe, PbI2,
etc), würtzite-type materials (ZnO, CdS, GaN, AlN, InN), and
other anisotropic polar materials. However, the numerical
results presented in this paper are restricted to the case of AlN.
According to the uniaxial symmetry involved, the equations of
the model are written in terms of three vector fields (�u(�r, t)—
the optical phonon field, �P(�r , t)—the polarization field and
�E(�r , t)—the electric field) [14]:

�̈uα(�r , t) = βα
11�uα(�r , t) + βα

12
�Eα(�r , t)

�Pα(�r , t) = βα
12�uα(�r , t) + βα

22
�Eα(�r , t)

(1)

where the index α corresponds to a direction that is either
parallel (α = ‖) or perpendicular (α = ⊥) to the optical axis.
The expressions of the β-coefficients lead to a diagonal form
for the dielectric tensor, with the components [14]:

εα(ω) = εα(∞)
(ωα

LO)2 − ω2

(ωα
TO)2 − ω2

, (2)

where εα(∞), ωα
TO and ωα

LO are high frequency dielectric
constant, the transverse phonon mode frequency and the
longitudinal phonon mode frequency along the principal
direction α, respectively. In the electrostatic approximation,
the electrostatic potential �(�r , t) is the key quantity of the
problem. Performing a partial time-Fourier transform of
the fields involved, the components of the phonon field are
obtained from (1) in terms of the spatial derivatives of the
electrostatic potential, according to the relation:

∑

α=‖,⊥
gα(ω)�uα(�r , ω) = −∇�(�r , ω) (3)

where
gα(ω) = [(ωα

TO)2 − ω2]/βα
12. (4)

In every distinct domain of the system (ρ < R1, R1 <

ρ < R2, or ρ > R2), the electrostatic potential satisfies the
following equations:

��(1) = 0, (ρ < R1) (5)

ε‖(ω)
∂2�(2)

∂x2
3

+ ε⊥(ω)

(
∂2�(2)

∂x2
1

+ ∂2�(2)

∂x2
2

)
= 0,

(R1 < ρ < R2) (6)

��(3) = 0, (ρ > R2), (7)

where ρ = (x2
1 + x2

2)
1/2.

In terms of cylindrical coordinates (ρ, z, ϕ), the
electrostatic potential in domains 1 and 3 is given by the
expressions:

�(1)(ρ, z, ϕ) =
∑

m,q

a(1)
mq Wmq(z, ϕ)I|m|(|q|ρ), (8)

�(3)(ρ, z, ϕ) =
∑

m,q

a(3)
mq Wmq(z, ϕ)Km(|q|ρ), (9)

I|m|(z) and Km(z) being the modified Bessel’s functions of the
first and the second kind, respectively [15]. By considering
periodic boundary conditions along the optical axis of the
system we obtain

Wmq(z, ϕ) = eiqzeimϕ

√
2π L

, (10)

with q = 2πr
L , r = 0,±1,±2, . . . and m = 0,±1,±2, . . .,

respectively; L is the length of the tube. In domain 2, the form
of the electrostatic potential is

�(2)(ρ, z, ϕ) =
∑

m,q

[
a(2)

mq f (1)
m

( |q|ρ√|s(ω)|
)

+ b(2)
mq f (2)

m

( |q|ρ√|s(ω)|
)]

Wmq (z, ϕ), (11)

where, depending on the sign of the ratio s(ω) = ε⊥(ω)

ε‖(ω)
, the

functions f (1)
m (z) and f (2)

m (z) are defined by the equalities:
f (1)
m (z) = I|m|(z) and f (2)

m (z) = Km(z) for s > 0 and,
respectively, f (1)

m (z) = J|m|(z) and f (2)
m (z) = Y|m|(z) for

s < 0; J|m|(z) and Y|m|(z) are Bessel’s functions of the first
and second kind. Standard electrostatic boundary conditions
are considered at the two surfaces of the tube. At the surface
ρ = R1, these conditions lead to the equations:

I|m|(|q|R1) = αmq(ω) f (1)
m

( |q|R1√|s(ω)|
)

+ βmq(ω) f (2)
m

( |q|R1√|s(ω)|
)

, (12)

I ′
|m|(|q|R1) = ε⊥(ω)√|s(ω)|

[
αmq(ω) f (1)′

m

( |q|R1√|s(ω)|
)

+ βmq(ω) f (2)′
m

( |q|R1√|s(ω)|
)]

, (13)

where αmq(ω) = a(2)
mq(ω)/a(1)

mq(ω), and βmq(ω) =
b(2)

mq(ω)/a(1)
mq(ω). By introducing the quantity ξ1 = |q|R1√|s(ω)| and

taking into account the classical expression of the Wronskian
of the solutions of Bessel’s equation [15],

f (1)′
m (z) f (2)

m (z) − f (1)
m (z) f (2)′

m (z) = s(ω)

|s(ω)|
1

z
, (14)

the expression of αmq(ω) and βmq(ω) coefficients are obtained:

αmq(ω) = −ξ1
s

|s|
[

I|m|(|q|R1) f (2)′
m (ξ1)

−
√|s(ω)|
ε⊥(ω)

I ′
|m|(|q|R1) f (2)

m (ξ1)

]
, (15)

2
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βmq(ω) = ξ1
s

|s|
[

I|m|(|q|R1) f (1)′
m (ξ1)

−
√|s(ω)|
ε⊥(ω)

I ′
|m|(|q|R1) f (1)

m (ξ1)

]
. (16)

We have to note that the above defined αmq(ω) and βmq(ω)

coefficients depend on ω in two ways: firstly, through ξ1 and,
secondly, due to the presence of the factor

√|s(ω)|
ε⊥(ω)

in (15)
and (16). Then, in domain 2, the electrostatic potential which,
in addition, satisfies the electrostatic boundary conditions at the
inner surface, has the form:

�(2)(ρ, z, ϕ) =
∑

mq

a(1)
mq Fmq(ξ, ω)Wmq (z, ϕ), (17)

where ξ = |q|ρ√|s(ω)| and

Fmq(ξ, ω) = αmq(ω) f (1)
m (ξ) + βmq(ω) f (2)

m (ξ). (18)

3. Optical phonon modes

By imposing electrostatic boundary conditions at the outer
surface, ρ = R2, (ξ2 = |q|R2√|s(ω)| ), the equation for the dispersion
law of the optical phonon modes can be written in the compact
form:

fm(q, ω) = 0, (19)

where

fm(q, ω) = −
√|s(ω)|
ε⊥(ω)

Fm(ξ2, ω)

F ′
m(ξ2, ω)

+ Km(|q|R2)

K ′
m(|q|R2)

. (20)

This way of writing the equation for the dispersion law of
the optical phonon modes will be used in the appendix to
obtain the normalization constant for the eigenvectors of the
phonon field and, consequently, to put the electron–phonon
interaction term into a closed form. In the following, in order
to discuss the frequency spectrum of the optical phonon modes
we use (15), (16), (18) and (20) to put (19) in its developed
form:

f (1)′
m (ξ1) −

√|s(ω)|
ε⊥(ω)

f (1)
m (ξ1)

I ′
|m|(|q|R1)

I|m|(|q|R1)

f (1)′
m (ξ2) −

√|s(ω)|
ε⊥(ω)

f (1)
m (ξ2)

K ′
m(|q|R2)

Km(|q|R2)

=
f (2)′
m (ξ1) −

√|s(ω)|
ε⊥(ω)

f (2)
m (ξ1)

I ′|m|(|q|R1)

I|m|(|q|R1)

f (2)′
m (ξ2) −

√|s(ω)|
ε⊥(ω)

f (2)
m (ξ2)

K ′
m(|q|R2)

Km(|q|R2)

. (21)

The classification of the optical phonon modes of the tube
is similar to that used in the case of a wire [16], resulting
in surface phonon modes for s > 0, with ε⊥ < 0, and
confined phonon modes for s < 0 (quasilongitudinal modes
for ε⊥ < 0 and quasitransverse modes for ε‖ > 0). The
presence of the inner surface leads not only to the appearance
of the corresponding surface phonon modes, but also to the
modification, in the long wavelength range, of the whole
phonon spectrum, as will be specified in the following.

3.1. Dispersion laws of surface phonon modes

The spectrum of the surface phonon modes, having frequencies
distributed in the range (ω⊥

TO, ω
‖
LO), is composed by two sets

of phonon branches, each set corresponding to one surface.
The phonon branches of the inner surface are situated in the
upper part of the surface phonon spectrum. We introduce a
new superscript index μ, taking the values 1 and 2 in order to
label the surface phonon branches corresponding to the inner
and outer surface, respectively. We shall call this index the
character index and, in the following, we shall use it also to
label the confined phonon modes (as quasitransverse phonon
modes for μ = 3 and quasilongitudinal phonon modes for
μ = 4). Among the surface phonon branches, the ones with the
angular number m = 0 have a peculiar behavior, changing their
character to a confined type at specific values of the wavevector
|q|, irrespective of the value of the ratio R1/R2. Thus, by
taking into account that in both situations s(ω) → ∞, for
ω → ω⊥

TO, ω > ω⊥
TO in the case of the m = 0 branch of

the outer surface modes (μ = 2), or ω → ω
‖
LO, ω < ω

‖
LO in

the case of the m = 0 branch of the inner surface modes (μ =
1), respectively, approximate expressions of m = 0 Bessel’s
functions for small arguments ξ1 and ξ2 can be used, so that the
value of |q| which determines the branch character changing
is obtained for each set. Then, the m = 0 phonon branch,
corresponding to the outer surface, changes its character into
that of the quasitransverse m = 0 branch, for values of |q|
smaller than q (2)

0 , given by

q(2)
0 = 2

R2
2 − R2

1

1

ε‖(ω⊥
TO)

[
R2

K ′
0(q

(2)

0 R2)

K0(q
(2)

0 R2)
− R1

I ′
0(q

(2)

0 R2)

I0(q
(2)

0 R2)

]
.

(22)
By taking the limit R1 → 0, the result obtained in the case of
a quantum wire (see (33) in [16]) is recovered for q (2)

0 .
Also, the m = 0 phonon branch of the inner surface

(μ = 1) changes its character into that of the m = 0
quasilongitudinal phonon branch for |q| < q (1)

0 , where

q(1)

0 = ε⊥(ω
‖
LO)

ln
(

R1
R2

)
[

1

R1

I0(q
(1)
0 R1)

I ′
0(q

(1)
0 R1)

− 1

R2

K0(q
(1)
0 R2)

K ′
0(q

(1)
0 R2)

]
. (23)

In the limit |q| → 0, the phonon mode frequencies with m �= 0
of the two sets depend on the ratio R1

R2
, being given by the

relation:

(ω(μ)
m )2 = (ω⊥

LO)2 + (ω⊥
TO)2 g(μ)

m

ε⊥(∞)

1 + g(μ)
m

ε⊥(∞)

, (24)

with μ = 1 for the inner surface and μ = 2 for the outer
surface; we have denoted

g(1)
m = 1 − ( R1

R2

)m

1 + (
R1
R2

)m = (g(2)
m )−1. (25)

One can easily verify that, according to (24), the degeneracy of
the surface modes with m �= 0 at q = 0 encountered in the case
of a wire (the common frequency value is the solution of the
equation ε⊥(ω) = −1) [16] is lifted in the case of a tube. For
the outer surface modes, irrespective of the ratio R1/R2, the

3
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Figure 1. Spectrum of optical phonon modes of a würtzite-type AlN tube with R1/R2 = 0.85 (a) and R1/R2 = 0.5 (b), respectively. The
phonon branches of all types with the same m value are drawn with the same type of line: a black line for m = 0, a blue (gray) line for m = 1
and an orange (light gray) line for m = 2. Solid lines with corresponding colors were used for drawing the modes with l = 1, while dashed
lines were used for drawing the modes with l = 2. At the scale of the plot, both quasilongitudinal and quasitransverse confined modes with
l = 2 are overlapping for R1/R2 = 0.85.

values (24) (in fact solutions of the equation ε⊥(ω) = −g(2)
m )

always exist. However, the situation is quite different for the
phonon modes of the inner surface, particularly in the domain
of large wavelengths. Thus, an inner surface branch with
m �= 0 exists in the whole range of q only if the frequency ω(1)

m ,
the solution of the equation ε⊥(ω) = −g(1)

m , is smaller than the
value ω

‖
LO. Otherwise, at a specific value of |q| denoted by

q(1)
m , the branch adopts a quasilongitudinal-branch character.

For |q| → ∞, the branches of both sets meet the limit value
ωl , the inner branches from above and the outer branches from
below, where ωl is the corresponding solution of the equation
ε⊥(ω)ε‖(ω) = 1.

3.2. Dispersion laws of confined phonon modes

The confined phonon modes of the tube, derived from
the solutions of the electrostatic potential �(2)(ρ, z, ϕ) for
s(ω) < 0, identified for a three-dimensional würtzite-
type crystal with the so-called extraordinary optical phonon
modes, can be classified, similar to the case of a wire [16],
in quasilongitudinal modes, for ω ∈ (ω

‖
LO, ω⊥

LO), and
quasitransverse modes, for ω ∈ (ω

‖
TO, ω⊥

TO). In addition to the
indices m, q and μ, a supplemental index l appears, labeling
different solutions of (21). Note that, in the case of a wire made
of an isotropic material, this supplemental index is associated
with the lth zero of the Bessel function J|m|(z).

For μ fixed, the phonon spectrum is composed by a
set of confined phonon branches, ω = ω

(μ)

mql = ω
(μ)

ml (q),
depending on |q|. In the following, in order to be consistent
with the notations used for treating in a similar manner the
various types of phonon normal modes, we assign the index

l = 1 for the surface modes (μ = 1, 2) in the following
notations ω

(μ)

mq1 = ω
(μ)

m1 (q) = ω
(μ)
mq and �u(μ)

mq1(�r) = �u(μ)
mq (�r).

In figures 1(a) and (b), the full spectrum of optical phonon
modes of an AlN tube is presented for the values 0.85 and 0.5
of the ratio R1/R2, respectively. The following values of AlN
parameters were considered [17]: ε‖(∞) = 4.77, ε⊥(∞) =
4.77, ω

‖
TO = 611 cm−1, ω⊥

TO = 671 cm−1, ω
‖
LO = 890 cm−1

and ω⊥
LO = 912 cm−1. As can be seen, with increasing R1/R2

ratio, more quasilongitudinal (μ = 4) phonon branches change
their character into that of a inner surface (μ = 1) phonon
branch: (4, 0, 1), (4, 1, 1) and (4, 2, 1) in figure 1(a), and
the branches (4, 0, 1) and (4, 1, 1) in figure 1(b). All other
confined quasilongitudinal phonon branches start from ω⊥

LO for
|q|R2 → 0 and go to ω

‖
LO at large values of |q|R2.

With regard to the quasitransverse phonon modes, all the
branches start from ω

‖
TO, for small values of |q|R2, and go

to ω⊥
TO, for large values of |q|R2, excepting the branch with

m = 0 which changes its character, becoming an outer surface
branch for values of |q| greater than q (2)

0 . Introducing the unit
vectors {�eρ, �eϕ, �ez} of the cylindrical coordinates system, and
considering (3), (4), and (17), the components of the phonon
field eigenvectors (along, and perpendicular to the optical axis,
respectively α = ‖ and α = ⊥) are given by the expressions:

�u(μ)

mql,‖(ρ, z, ϕ) = a(μ)(1)

mql

iq

g‖(ω)
�ezWmq(z, ϕ)Fm(ξ, ω), (26)

�u(μ)

mql,⊥(ρ, z, ϕ) = a(μ)(1)

mql

g⊥(ω)
Wmq(z, ϕ)

×
[
�eρ

|q|√|s| F ′
m(ξ, ω) + �eϕ

im

ρ
Fm(ξ, ω)

]
, (27)

4
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where, in fact, the frequency ω is the frequency ω
(μ)

mql of the
corresponding normal mode. In a similar manner to that
developed in appendix A of [16], the orthogonality relation
verified by the eigenvectors of the optical phonon field is
found:

∫

V
dv �u(μ)∗

mql (�r)�u(μ′)
m′q ′l′ (�r) = δmm′δqq ′δll′δμμ′ . (28)

Taking into account the orthogonality relation (28) and
considering the above formulae, the expression of the
normalization constant a(μ)(1)

mql for all types of optical phonon
modes is obtained, in the appendix, in the following compact
form:

a(μ)(1)

mql =
( 2ω

(μ)
mql

ε0|q|R2

)1/2

∣∣∣∣∣

[
ε‖(ω)ε⊥(ω)

(
F ′

m

(
|q|R2√|s(ω)|

))2
∂ fm(q,ω)

∂ω

]

ω=ω
(μ)
mql

∣∣∣∣∣

1/2 .

(29)

3.3. Dispersion laws for a slab, obtained as a limiting case

Based on the asymptotic behavior of the Bessel functions at
large arguments, f (1)

m (ξ) → (2πξ)−1/2eξ and f (2)
m (ξ) →

( π
2ξ

)1/2e−ξ for s > 0, and, respectively, f (1)
m (ξ) →

( 2
πξ

)1/2 cos(ξ − π
4 − mπ

2 ) and f (2)
m (ξ) → ( 2

πξ
)1/2 sin(ξ −

π
4 − mπ

2 ), for s < 0, in the limit R1, R2 → ∞, but with
R2 − R1 = d = const., (21) recovers the form of the optical
phonon dispersion law, with a wavevector directed along the
optical axis, for an anisotropic slab having an optical axis in
the plane of the slab:

e− |q|d√
s = p

ε⊥ + √
s

ε − √
s

, for s > 0, (30)

and

e−i |q|d√|s| = p
ε⊥ + i

√|s|
ε − i

√|s| , for s < 0, (31)

p being the parity index, with p = 1 for symmetric modes and
p = −1 for anti-symmetric modes.

4. Free phonon Hamiltonian and electron–phonon
interaction

In this section, by paying an equal consideration to all types of
optical phonons, the Fröhlich Hamiltonian is obtained for our
considered anisotropic tube. First, we discuss the Hamiltonian
of the free phonons. The Hamiltonian of the free optical
phonons of a quantum wire Hph was obtained in [16] by
starting with the following expression for the energy density
of the free optical phonons:

h(�r) =
∑

α=‖,⊥
1
2 [
2

α(�r)+(ωα
TO)2u2

α(�r)−βα
12 Eα(�r)uα(�r)] (32)

resulting in

Hph =
∫

V
dv h(�r ). (33)

In (32), 
α is the α-component of the momentum density,
canonically conjugated to the corresponding component of the
field uα.

Here, in order to obtain the contributions of all types
of phonons to Hph, all the fields appearing into the forms
of the Hamiltonian densities will be developed in terms
of the eigenvectors of the phonon field, which verify the
orthogonality relation (28). In the following, we shall consider
�
(�r) and �u(�r) as field operators written in the Schrödinger
picture. Thus, the operator �u(�r) can be written in terms of the
phonon normal modes (m, q, l, μ):

�u(�r) =
∑

mqlμ

λ
(μ)

mql [�u(μ)

mql(�r)a(μ)

mql + h.c.], (34)

where, without losing the generality of the problem, the
quantities λ

(μ)

mql are considered to be real quantities, depending

on |m| and |q|; a(μ)

mql and a(μ)+
mql are the annihilation and creation

operators for the phonon mode (m, q, l, μ). The operators a(μ)

mql

and a(μ)+
mql satisfy typical Bose commutation relations:

[a(μ)

mql, a(μ′)
m′q ′l′ ] = 0, [a(μ)+

mql , a(μ′)+
m′q ′l′ ] = 0,

[a(μ)

mql, a(μ′)+
m′q ′l′ ] = δmm′δll′δqq ′δμμ′ .

(35)

For the purpose of putting the phonon Hamiltonian into the
form

Hph =
∑

mqlμ

h̄ω
(μ)

ml (q)(a(μ)+
mql a(μ)

mql + 1
2 ), (36)

we make use of the classical equation of motion (formally
identical with the equation verified by the operator written in
the Heisenberg picture)

�
 = �̇u, (37)

to derive the following expression in the Schrödinger picture
for the operator �
:

�
(�r) = −i
∑

mqlμ

λ
(μ)

mqlω
(μ)

ml (q)(�u(μ)

mql(�r)a(μ)

mql − h.c.). (38)

By using expression (34) of the operator �u(�r), the α component
of the electric field operator in (1) can be put into the form:

Eα(�r)=
∑

mqlμ

λ
(μ)

mql

(ωα
TO)2 − (ω

(μ)

ml (q))2

βα
12

[(�u(μ)

mql(�r))αa(μ)

mql+h.c.],
(39)

with α = ‖,⊥. By using (32), (34), (38) and (39), and
taking into consideration, in addition to the orthogonality
relation (28), the relationship verified by the phonon normal
modes

�u( j)(μ)∗
mql (�r) = �u( j)(μ)

−m,−q,l (�r), (40)

the desired form (36) of the Hamiltonian of optical phonons is
obtained by choosing

λ
(μ)

mql =
(

h̄

2ω
(μ)

ml (q)

)1/2

. (41)
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Next, we derive the Hamiltonian describing the interaction
of conduction band electrons and the optical phonon field
(Fröhlich interaction). This interaction, induced by both
types of polarization charges contributing to the electrostatic
potential—the volume charges and the surface charges, is
written as

He−ph = e�(�r), e < 0; (42)

e is the electron charge and �(�r) is the electrostatic potential
including all of the above specified contributions.

Phonon mode contributions to this Hamiltonian will
be obtained by developing the electrostatic potential in
terms of eigenvectors of the phonon field. By taking
into account the solution (11) for the electrostatic potential,
the development (34) of the phonon vector field and the
expression (41) of the constant λ

(μ)

mql , the electron–phonon
interaction Hamiltonian is obtained in the form:

He−ph = −
∑

mqlμ

�
(μ)

ml (q)

×
⎡

⎣Wmq(z, ϕ)Fm

⎛

⎝ |q|ρ√
|s(ω(μ)

ml (q))|

⎞

⎠ a(μ)

mql + h.c.

⎤

⎦ , (43)

where

�
(μ)

ml (q) = ( h̄e2

ε0|q|R2
)1/2

∣∣[ε‖(ω)ε⊥(ω)
(
F ′

m

( |q|R2√|s(ω)|
))2 ∂ fm(q,ω)

∂ω

]
ω=ω

(μ)
mql

∣∣1/2
.

(44)
Figures 2 and 3 show the behavior of the coupling

coefficients �
(μ)

ml (q) for all types of optical phonon modes
for an AlN tube with R1/R2 = 0.85 and R1/R2 = 0.5,
respectively; the coupling coefficients with |m| � 2 and
l = 1, 2 are plotted in all cases (μ = 1, 2, 3, 4). A
significant result, also seen in the case of a quantum wire made
of anisotropic materials [16], is that quasitransverse phonon
modes interact with band conduction electrons. This is a
consequence of the anisotropy of the material: for isotropic
materials, coupling coefficients corresponding to transverse
phonon modes are all zero. However, the values of �

(3)
ml (q) for

quasitransverse modes are much less than their counterparts
for quasilongitudinal (μ = 4), inner (μ = 1) or outer (μ = 2)

surface modes over the whole investigated |q|R2 range. All the
coupling coefficients corresponding to phonon modes whose
character is changing from an (inner or outer) surface mode
to a confined mode (quasitransverse or quasilongitudinal)
are continuous, with continuous derivative at |q|R2 values
where this change occurs. An interesting observation is
that, with increasing R1/R2 ratio, the values of �

(4)
ml (q) for

quasilongitudinal modes, changing their character into inner
surface modes, increase significantly at small |q|R2 values.

5. Summary

To summarize, dispersion laws of the full optical phonon
spectrum for a cylindrical nanotube made of uniaxial
anisotropic würtzite-type materials were obtained in the frame
of the DC model. Using an appropriate form [16] of the energy
density of the optical phonon system and the orthogonality

Figure 2. Coupling constants �
(1)

ml (q) and �
(4)

ml (q) (a) and,
respectively, �(2)

ml (q) and �
(3)

ml (q) (b) for a würtzite-type AlN tube
with R1/R2 = 0.85. The values of |q|R2 where the character is
changing from a confined mode to a surface mode are marked by
vertical dash-dotted lines. Coupling constants are plotted,
respectively, in black for m = 0, in blue (gray) for m = 1 and in
orange (light gray) for m = 2; solid lines correspond to l = 1, while
dashed lines correspond to l = 2. Beyond the transition points where
the change of character occurs, solid lines are continued with dotted
lines, to illustrate the continuity of the corresponding �

(μ)

ml (q)s.

relation verified by the eigenvectors of the optical phonon
field, the contributions to the Hamiltonian of the system of
all types of optical phonons were found. The presence of

6
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Figure 3. Coupling constants �
(1)

ml (q) and �
(4)

ml (q) (a) and,
respectively, �(2)

ml (q) and �
(3)

ml (q) (b) for a würtzite-type AlN tube
with R1/R2 = 0.5. The values of |q|R2 where the character is
changing from a confined mode to a surface mode are marked by
vertical dash-dotted lines. Coupling constants are plotted,
respectively, in black for m = 0, in blue (gray) for m = 1 and in
orange (light gray) for m = 2; solid lines correspond to l = 1, while
dashed lines correspond to l = 2. Beyond the transition points where
the change of character occurs, solid lines are continued with dotted
lines, to illustrate the continuity of the corresponding �

(μ)

ml (q)s.

the inner surface induces, in addition to the occurrence of the
corresponding surface phonon modes, important modifications
of the whole phonon spectrum in the long wavelength range.

Thus, the degeneracy of the outer surface modes with m �= 0
and q → 0, encountered in the case of a wire [16], is raised
in the case of the tube. Results of numerical calculations
for nanotubes made of würtzite AlN were presented. As a
consequence of the uniaxial anisotropy of the materials, all
the confined modes show dispersion, in the range [ω‖

TO, ω⊥
TO]

in the case of quasitransverse modes and, respectively, in the
range [ω‖

LO, ω⊥
LO] in the case of quasilongitudinal modes. It

was found that confined modes with angular number m =
0, both quasitransverse and quasilongitudinal, switch their
character into that of a surface branch at specific values of
the wavevector; this holds irrespective of the value of the
ratio R1/R2. The m = 0 quasitransverse mode switch
to m = 0 mode corresponding to the outer surface, while
m = 0 quasilongitudinal mode switches to a m = 0 mode
corresponding to the inner surface. In addition, depending on
the R1/R2 value, m �= 0, l = 1 quasilongitudinal branches
may switch to inner surface branches with the same m: the
greater the ratio R1/R2, the more pronounced this effect
is. Also, the form of the interaction Hamiltonian of optical
phonons with a conduction band electron was found. The
coupling coefficients, describing the electron–optical phonon
interaction, for all types of phonons, were obtained in an
analytical closed form, which is an extension to this case of
other similar expressions obtained for 3D [18] and q-2D [19]
systems or q-1D nanowires [16] made of uniaxial anisotropic
materials. As an effect of anisotropy, there is an interaction
between quasitransverse phonon modes and conduction band
electrons. However, this interaction is weaker than in the
case of quasilongitudinal or surface phonon modes. For
those phonon modes which switch from a quasitransverse or
quasilongitudinal confined character to surface modes, the
coupling coefficients are continuous with continuous derivative
at the switching points. The results we have obtained are
of practical interest in considering the polaron problem or
the electron scattering on optical phonons in such type of
systems, as well as in considering the problem of a q-
1D axially-symmetric heterostructure of the type anisotropic
material(1)/anisotropic material(2).
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Appendix

Considering (26) and (27) giving the components of the
eigenvectors of the optical phonon field, the orthogonality
relation (28) leads to the following expression of the
normalization constant a(1)

mq :

∣∣a(1)
mq

∣∣−2 =
∫ R2

R1

dρ ρ

{
q2

g2
‖(ω)

F2
m(ξ, ω)

+ 1

g2
⊥(ω)

[
m2

ρ2
F2

m(ξ, ω) + q2

|s| (F ′
m(ξ, ω))2

]}
. (A.1)
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In the following, in order to simplify the expressions, we shall
make the notation λ = |q|√|s| , renouncing also, for the moment,
to explicitly specify into the formulae the ω dependence of the
different quantities: Fm(λρ, ω), s(ω), g‖,⊥(ω), ε‖,⊥(ω). Now,
integrating by parts the last term in the right-hand side of (A.1),

∫ R2

R1

dρ ρ(F ′
m(λρ))2 = ρ

λ
Fm(λρ)F ′

m(λρ)
∣∣R2

R1

−
∫ R2

R1

dρ ρFm(λρ)

[
F ′′

m(λρ) + 1

λρ
F ′

m(λρ)

]
, (A.2)

and, taking into account the Bessel-type equation,

F ′′
m(λρ) + 1

λρ
F ′

m(λρ) =
(

s

|s| + m2

λ2ρ2

)
Fm(λρ), (A.3)

(A.1) becomes

∣∣a(1)
mq

∣∣−2 = λρ

g2
⊥

Fm(λρ)F ′
m(λρ)

∣∣∣∣
R2

R1

+
[

q2

g2
‖

− λ2

g2
⊥

s

|s|
] ∫ R2

R1

dρ ρ(Fm(λρ))2. (A.4)

The last integral is an extension of the so-called Lommel-type
integral [15] to the case of a general solution of the Bessel’s
equation (A.3). One obtains
∫ R2

R1

dρ ρ(Fm(λρ))2 = − s

|s|
{

ρ2

2

[
(F ′

m(λρ))2

− Fm(λρ)F ′′
m(λρ) − 1

λρ
Fm(λρ)F ′

m(λρ)

]}∣∣∣∣
R2

R1

. (A.5)

Now, in terms of ξ variable, (A.4) can be put into the form:

|a(1)
mq |−2 = ξ

2

(
1

g2
⊥

+ s

g2
‖

)
F ′

m(ξ)Fm(ξ)

∣∣∣∣
R2

R1

+ ξ 2

2

(
1

g2
⊥

− s

g2
‖

)[
(F ′

m(ξ))2 − Fm(ξ)F ′′
m(ξ)

]∣∣∣∣
R2

R1

, (A.6)

where ξ1,2 = λR1,2.
By taking into account the relations:

1

g2
‖,⊥(ω)

= ε0

2ω

∂ε‖,⊥(ω)

∂ω
, (A.7)

and
∂ξ

∂ω
= ξ

2ε‖ε⊥

(
ε⊥

∂ε‖
∂ω

− ε‖
∂ε⊥
∂ω

)
, (A.8)

(A.6) can be put into the form

|a(1)
mq |−2 = ε0

4ωε‖
(I (R2) − I (R1)). (A.9)

In the above expression we have denoted

I (ρ) = ∂

∂ω
(ε‖ε⊥)ξ F ′

m(ξ, ω)Fm(ξ, ω) − 2(ε‖ε⊥)ξ

× ∂ξ

∂ω

[
(F ′

m(ξ, ω))2 − Fm(ξ, ω)F ′′
m(ξ, ω)

]
. (A.10)

At this moment, we have to stress that in (A.10) the
function Fm(ξ, ω) depends on R1 due to electrostatic boundary

conditions at the inner surface, a fact which leads to the
dependence on R1 of the coefficients αmq(ω) and βmq(ω).
Because, at the two surfaces, the electrostatic boundary
conditions are written in terms of the functions

g(1,2)(ω) = Fm(ξ1,2, ω)

F ′
m(ξ1,2, ω)

, (A.11)

in the following, we shall evaluate the ω derivative for these
functions, by taking into account the double dependence on
ω as we have mentioned before. Now, performing the ω

derivative of the functions defined by (A.11), and taking into
account the expression (14) of the Wronskian, one obtains

∂g(i)(ω)

∂ω
= ∂ξi

∂ω

[
1 − Fm(ξi , ω)F ′′

m(ξi , ω)

(F ′
m(ξi , ω))2

]

+ 1

ξi

s

|s|
(

αmq(ω)
∂βmq(ω)

∂ω
− βmq(ω)

∂αmq(ω)

∂ω

)

× 1

(F ′
m(ξi , ω))2

(A.12)

with i = 1, 2.
In these conditions, (A.9) becomes

|a(1)
mq |−2 = ε0

4ω

ξ2

ε‖
(F ′

m(ξ2, ω))2

{
∂

∂ω
(ε‖ε⊥)g(2)(ω)

− 2ε‖ε⊥
∂g(2)(ω)

∂ω

}
− ε0

4ω

ξ1

ε‖
(F ′

m(ξ1, ω))2

×
{

∂

∂ω
(ε‖ε⊥)g(1)(ω) − 2ε‖ε⊥

∂g(1)(ω)

∂ω

}
, (A.13)

an expression which, after some calculations, can be
transformed into a more compact form:

|a(1)
mq |−2 = − ε0

2ω
|q|R2|ε‖(ω)ε⊥(ω)|(F ′

m(ξ2, ω))2

× ∂

∂ω

(√|s(ω)|
ε⊥(ω)

g(2)(ω)

)

+ ε0

2ω
|q|R1|ε‖(ω)ε⊥(ω)|(F ′

m(ξ1, ω))2

× ∂

∂ω

(√|s(ω)|
ε⊥(ω)

g(1)(ω)

)
. (A.14)

From the electrostatic boundary conditions (12) and (13) at the
surface ρ = R1, the following relation results:

g(1)(ω)

√|s(ω)|
ε⊥(ω)

= I|m|(|q|R1)

I ′
|m|(|q|R1)

, (A.15)

which leads to

∂

∂ω

(
g(1)(ω)

√|s(ω)|
ε⊥(ω)

)
= 0. (A.16)

Consequently, the second term of the expression (A.14)
cancels. In these conditions, the form of the normalization
constant of the eigenvectors of the optical phonon field can be
written in terms of the ω derivative of the function fm(q, ω)

defined in (20), obtaining

|amq |−2 = ε0

2
|q|R2

[
|ε‖(ω)ε⊥(ω)|

(
F ′

m

( |q|R2√|s(ω)| , ω
))2

× 1

ω

∂ fm(q, ω)

∂ω

]

ω=ω
(μ)
ml (q)

. (A.17)
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We have chosen this approach to derive the expression
of the normalization constant because it readily yields a
generalization to the case of the core–shell structure of the type
GaN/AlN, for example.

It is important to verify that, in the limit of a quantum
wire (R1 → 0, R2 = R) the expression (A.17) recovers the
relation (B.10) in [16]; for the sake of simplicity we shall
restrict ourselves to the particular case of the surface phonon
modes. Thus, for the surface modes of a wire, the dispersion
laws are given by the relation (22) in [16]:

f (0)
mq = 0, with

f (0)
mq = ε⊥(ω)√

s(ω)
−

I|m|
( |q|R√

s(ω)

)
K ′

m(|q|R)

I ′
|m|

( |q|R√
s(ω)

)
Km(|q|R)

.
(A.18)

In the limit R1 → 0, R2 = R, the function Fm(
|q|R√|s(ω)| )

becomes the modified Bessel function of first kind I|m|( |q|R√|s(ω)| )
so that, in this particular case, the functions f (0)

mq (ω) and
fm(q, ω) are related by the following expression:

fm(q, ω) = − Km(|q|R)

K ′
m(|q|R)

f (0)
mq (ω)

√
ε⊥(ω)ε‖(ω)

. (A.19)

Because, both (20) and (A.18) have the same solutions (the
frequencies of the surface phonon modes), denoted here, for
the sake of simplicity, by ω̃, it is easily verified that

(
∂ fm(q, ω)

∂ω

)∣∣∣∣
ω=ω̃

= 1

ε⊥(ω)ε‖(ω)

I|m|
( |q|R√

s(ω)

)

I ′
|m|

( |q|R√
s(ω)

)
∂ f (0)

mq

∂ω

∣∣∣∣
ω=ω̃

,

(A.20)

proving that (A.17) reduces to the expression (B.10)
in [16].
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